
SnapSource: Automatic Snapshots of Source Codes

Hans Dulimarta
http://www.egr.msu.edu/˜dulimart

dulimart@computer.org

Contents

1 Introduction 2

2 What is SnapSource? 2

3 Supported Features 3

4 Obtaining SnapSource 4

5 Installation and Running 4
5.1 Running snapsource . 4
5.2 Running snapview . 5
5.3 Searching for Delta Files . 5

6 Configuration File 10
6.1 Interval . 10
6.2 Source and Target Directory . 10
6.3 File Inclusion or Exclusion . 10
6.4 Colors . 11
6.5 Options . 11
6.6 Running crontab . 11

7 Requirements 11

8 Planned Additional Features 11

9 Target and Source Directory Coherence 12

10 Bugs Report or Feature Requests 12

1

2 WHAT IS SNAPSOURCE?

WARNING: If you installed SnapSource version 0.10 or earlier, you
have to update your configuration file by replacing comment charac-
ter from pound (‘#’) to double slash (//).

1 Introduction

Right after Release 0.11 of SnapSource was announced, I got a comment in Freshmeat
(http://freshmeat.net) from a user and he thought that SnapSource is YACVS (Yet An-
other CVS). No, it is not! In fact, if you read on you’ll find out in Section 8 that I’m planning
to synchronize information from the CVS local directory with that of SnapSource.

SnapSource was initially created for fulfilling my own need of some automatic de-
velopment tools. In one of the projects I worked on, I had to try a number of different
solutions to a problem before coming up with a final one. In experimenting with one
solution, many changes had to be made to a set of source codes. Keeping the historical
records of these changes across many different files in more than one subdirectory was a
very tedious task.

It’s true that RCS (Revision Control System) and Concurrent Version Control (CVS)
provide facilities for managing modifications of our code. New versions are usually
checked in when a “stable” release of the code is established. Checking in modifications
which are not thoroughly tested will clutter the repository with unusable releases. Be-
tween two CVS commits, SnapSource will come in handy to provide you with a number
of micro revision of your source code.

In our software projects, we often found ourselves amidst of modify-compile-test
loops. The modification made to our codes can be either for fixing bugs or adding new
features. During modification of the codes, it is possible that a new bug crept into our
code. I thought that it would be nice to have an automatic tool which can periodically
take a snap shot of our source codes, to facilitate browsing the historical records of what
changes made to the codes as well as enabling us to revert the codes to an earlier version.

So, let there be SnapSource ...

2 What is SnapSource?

In short, SnapSource is a utility written in Perl to solve the problem mentioned above.
Creating the snapshot by merely copying the files at regular time interval will take a

lot of space. Consider a project which has 100 Kbytes of source code. Taking the snapshot
at an interval of 5 minutes will require a space of approximately 1.2 Mbytes after 1 hour.
Usually changes made to the source codes between one snap shot to the next in a short
time interval is very little, as little as few lines of codes. To overcome this space problem,
the snap shot should store only the differences. SnapSource takes the later approach.

When SnapSource runs for the first time, it will recurse the source directory mentioned
in the configuration files and then create a bunch of base files of the snapshot. Again, to
conserve space, the base files are stored in compressed format. Currently, gzipped files
are used. The next times SnapSource is invoked, it will create the difference (by running

Revision 0.17 2

3 SUPPORTED FEATURES

diff) between the current version of the source code and the corresponding base file. This
difference file is referred to as delta file. The base files and delta files are stored in separate
directories.

3 Supported Features

• SnapSource can recurse directory of more than one software project. Each project
can be configured separately via a configuration file.

• Inclusion and exclusion of directory or file names can be controlled using three op-
tions INCLUDE_PATTERS, EXCLUDE_PATTERS, and EXCLUDE_DIRS.

• Automatic snapshots were taken by using cron facility. Activation of cron can be
done by passing option -i .

• Differences between two snapshots can be displayed side by side (two-column for-
mat). This can be used for displaying the differences between a base and a delta file
or between two delta files. Modified, changed, and deleted lines in the source code
are shown in different colors for easy browsing.

• List all delta files of a selected source file.

• Search delta files by date. In most software development stage, modifications to
source codes usually possess temporal locality, i.e. changes to a number of files
made at about the same time. This feature might be useful in finding out this group
of files, because usually changes made in this group are somewhat interrelated. The
date specification must follow one of the following formats:

1. Year only, such as in 2000 to search for all delta files created in year 2000, or

2. Year and month, such as in 2000/9 to search for all delta files created in
September 2000,

3. A complete year, month, and date, such as in 2000/9/17 to search for all delta
files created on that particular date.

The search results can be selected and compared to its base file.

• Recalculate the new set of delta files when the base file of a particular source code
is set to a newer revision date.

• Uninstallation of a specific project by specifying the -u option

• In the project tree display, directory names are tagged with folder icon to facilitate
easy distinction from regular files.

• Display of detail information of each delta file: number of changes, deletions, and
additions.

Revision 0.17 3

5 INSTALLATION AND RUNNING

4 Obtaining SnapSource

If you have access to this file, I assume that you have downloaded the complete SnapSource
tar file in one way of another. If not, you can obtain the tar file from the SnapSource’s home
page hosted at SourceForge (http://sourceforge.net/projects/snapsource).
The current version of SnapSource is 0.17 .

5 Installation and Running

1. Put snapsource and snapview in a one of the directories in your PATH. If neces-
sary, change the permission bit of both files with chmod u+x . Put folder.xpm in
the same directory as snapview .

2. This utility has been tested using Perl/Tk version 800.018. If the widget demo
script of this package runs, you should be able to run SnapSource. Otherwise, you
might have to set your PERL5LIB to the path where Perl/Tk is installed in your
system.

3. Create directory .snapsource under your home directory

4. Edit your SnapSource configuration file and copy it to the .snapsource directory
created in the previous step.

cp path-to-config-file/MyProject home-directory /.snapsource

SnapSource consists of two utilities snapsource and snapview .

5.1 Running snapsource

• To run SnapSource manually:

snapsource MyProject

• To run SnapSource from cron , use the “install” option:

snapsource -i MyProject

This is the recommended way of running snapsource .

• To stop running SnapSource on a specific project, use the “uninstall” option:

snapsource -u MyProject

Revision 0.17 4

http://sourceforge.net/projects/snapsource

5 INSTALLATION AND RUNNING 5.2 Running snapview

Figure 1: Main window of snapview .

5.2 Running snapview

The utility snapview is the GUI for browsing through all the delta files created by snap-
source . The first screen that you will see after running snapview is shown in Figure 1.

After this point, you can select a project by clicking the down arrow on the pull-down
menu to bring up a list of all project configuration files found in the ˜/.snapsource
directory. After the project name is chosen and the “Select Project” button is clicked, a
tree display of the selected project will show up (Figure 2). In the current implementation,
the tree display does not distinguish between ordinary file and directory. However, if a
directory name on the tree display is double clicked, the content of that directory will
be shown and the tree display will expanded accordingly. If an ordinary file is double
clicked, the delta compare window in Figure 3 will show up.

Comparing files maintained by SnapSource can be done in two ways:

• Comparing a base file and a delta file

• Comparing two delta files with different date of snapshot

This choice can be selected by clicking the radio button on top of the window shown in
Figure 3. When “Base & Delta” is selected, only one date box will be visible, but when
“Delta & Delta” is selected, two date boxes will be visible for selecting the snapshot date
of the first and second delta files.

The output of comparing delta files (base–delta or delta–delta) will be similar to that
shown in Figure 4.

5.3 Searching for Delta Files

In an active software development project, its source code will continually changing, and
hence a large number of delta files will be produced when SnapSource is used to maintain
the project. To facilitate easy selection of delta files, SnapSource provides a “Search by
Date” facility which can be invoked from the DELTA::SEARCH BY DATE menu. As a result,
a window in Figure 5 will show up.

The “Revision Date” entry field can be given in three formats: YYYY/MM/DD, YYYY/MM,
or YYYY. The most complete format will search for delta files which are produced on a
specified date. The least complete format will search for delta files in a specified year.

To speed up changing the date entry, a combination of radio button and push button
can be used. The PREV and NEXT will change the date to a less and more recent date,
respectively. Figure 6 shows a typical search result.

Revision 0.17 5

5 INSTALLATION AND RUNNING 5.3 Searching for Delta Files

Figure 2: Tree display of a project.

Another facility provided by SnapSource is listing of all delta files. When the DELTA::LIST
ALL menu is selected, a window similar to Figure 7 will be shown. Two commands are
available on the window: REASSIGN BASE and DELETE DELTA. Both commands work
on the selected file from the list. DELETING DELTA is self-explanatory. Further detail
description will be given to the REASSIGN BASE command.

For each source file managed by SnapSource, a compressed base file will be created.
On each periodic snapshot, a delta file will be created for the source whenever the current
content of the source differs from the uncompressed base file. All subsequent delta files
will be created based on the difference to this base file.

When a base file is reassigned to a new revision date three things have to be carried
out:

1. A new compressed base file has to be created

2. All delta prior to the given revision date has to be deleted

3. All delta after the given revision date has to be updated

Revision 0.17 6

5 INSTALLATION AND RUNNING 5.3 Searching for Delta Files

Figure 3: Comparing base and delta file of a project.

Figure 4: Two-column output of comparing base and delta file

Figure 5: Searching delta files by date

Revision 0.17 7

5 INSTALLATION AND RUNNING 5.3 Searching for Delta Files

Figure 6: Search Result

Revision 0.17 8

5 INSTALLATION AND RUNNING 5.3 Searching for Delta Files

Figure 7: Listing all delta files

This process will be describe formally as follows. Suppose a compressed base file
B and n delta files: D1, D2, . . . , Dn are currently maintained, and the base file will be
assigned to the revision date of Dj’s.

1. Bu = uncompress (B)

2. B′ = patch (Bu, Dj).

3. Delete D1, D2, . . . , Dj

4. For k = j + 1, . . . n: Dk = diff (B′, patch (Bu, Dk))

5. B = compress (B′)

Revision 0.17 9

6 CONFIGURATION FILE

6 Configuration File

In order to create the snapshots, SnapSource has to be informed where to check the source
codes and where to store the base and delta files. A configuration file is read from the
.snapsource directory in your home directory. Lines beginning with a double slash
sign (//) in the configuration file are considered as comment lines and will be ignored by
snapsource . WARNING: Starting in release 0.11, the old comment delimiter (‘#’) was
obsoleted, because the pound sign was used by Tk to represent color names.

In general, a SnapSource configuration file is line-oriented and each line consists of a
parameter name and its value delimited by an equal sign. All configuration entries have
to be written not to exceed a single line.

6.1 Interval

To perform automatic and periodic capture of source code, SnapSource must be triggered
by some external event. The INTERVAL parameter specifies how often the external event
should be generated. The value specified is given in minutes.

6.2 Source and Target Directory

In the configuration file, SOURCE_DIRECTORYspecifies the top-level directory where
the source code of the project is stored. This directory will be recursively checked by
SnapSource. The TARGET_DIRECTORYspecifies the directory to store the base and delta
files. Under this target directory, SnapSource will create two subdirectories: base (for
storing the base files) and delta (for storing the delta files).

The structure of SOURCE_DIRECTORYwill be mimicked in the target directory as
TARGET_DIRECTORY/baseand TARGET_DIRECTORY/delta . Files in the delta direc-
tory will have a suffix

diff. YYYYMMDDhhmmss

where YYYY is the year, MM is the month (01–12), DD is the day (01–31), hh is the hour
(01–23), mm is the minute (00–59), and ss is the second (00–59) when the difference was
created.

6.3 File Inclusion or Exclusion

With thousands of programming language out there in the software world, SnapSource
has to anticipate the possibility that the source codes it has to take care of can be writ-
ten in anyone of these languages. Therefore, users are given choice to selectively in-
clude or exclude file names by some patterns. The parameters INCLUDE_PATTERNSand
EXCLUDE_PATTERNSare provided for this purpose. Patterns can be given as if they were
shell wild cards.

Starting in Revision 0.15, SnapSource offers an option for excluding directory names
as well. This behavior is controlled by the parameter EXCLUDE_DIRS. Any directories

Revision 0.17 10

8 PLANNED ADDITIONAL FEATURES 6.4 Colors

whose name matches any of the patterns specified in this option will be excluded from
the search by snapsource . This also implies that all the files and lower subdirectories
under those directories will be excluded.

6.4 Colors

To facilitate easy visual location of changes in the source code, SnapSource displays them
in different colors. To accommodate different window manager themes and color settings,
user preferred colors can be specified in the configuration file.

The parameters ADD_COLOR, CHANGE_COLOR, and DELETE_COLORcan be set to any
color names in the X windows color name data base or a color constant prefixed with a
pound sign (‘#’) as used by Tk_Color .

6.5 Options

SnapSource is designed to incorporate extensive user customization preferences. There
are a number of different spots in which user preferences can be incorporated in to the
SnapSource utility: compression method for creating base files, diff command options for
creating delta files, delta file suffix format, etc.

In this release of SnapSource, the parameter DIFF_OPTION can be used to specify how
delta files are to be generated.

6.6 Running crontab

Starting release 0.10, a new option for specifying location of the crontab program is
available. If this variable is undefined, CRONTABwill be set to /usr/bin/crontab .

7 Requirements

Perl/Tk has to be installed for the snapview to run properly.

8 Planned Additional Features

• Command for reverting source code to a particular previous revision date

• Multiple selection on DELETE DELTA command.

• Use vixie cron features, if it is installed.

• Incorporate information from the CVS or RCS directory.

• Modularized Perl code

Revision 0.17 11

10 BUGS REPORT OR FEATURE REQUESTS

9 Target and Source Directory Coherence

Some questions that need to be addressed:

• What to do if source files are moved to another directory?

• What to do if source files are renamed?

10 Bugs Report or Feature Requests

If you find any unexpected behavior of SnapSource or have some suggestions for im-
provement, please contact me by e-mail at <dulimart at computer.org> .

When you report a bug, please include the following:

• Output of snapsource -v YourConf , where YourConf is your SnapSource con-
figuration file

• A copy of YourConf

• Description of the bug and how to reproduce it

• E-mail output generated by crontab , if you installed snapsource as a cron job.

Revision 0.17 12

mailto:dulimart@computer.org

	Introduction
	What is SnapSource?
	Supported Features
	Obtaining SnapSource
	Installation and Running
	Running snapsource
	Running snapview
	Searching for Delta Files

	Configuration File
	Interval
	Source and Target Directory
	File Inclusion or Exclusion
	Colors
	Options
	Running crontab

	Requirements
	Planned Additional Features
	Target and Source Directory Coherence
	Bugs Report or Feature Requests

